一个MapReduce计算写入多个输出_2
有时,我们要求Hadoop作业将数据写入多个输出位置。Hadoop提供了一种工具,可以根据我们的需要,使用MultipleOutputs类在不同的位置编写作业的输出。
Hadoop的MultipleOutputs类提供了将Hadoop map/reducer输出写到多个文件夹的工具。这个MultipleOutputs特性也允许我们为每个输出指定一个不同的OutputFormat。
MultipleOutputs类有一个静态方法addNamedOutput,用于向给定的作业添加指定的输出。该方法的签名如下:
public static void addNamedOutput(Job job,
String namedOutput,
Class<? extends OutputFormat> outputFormatClass,
Class<?> keyClass,
Class<?> valueClass)
只需要在MapClass或Reduce类中加入如下代码:
private MultipleOutputs<Text, IntWritable> mos;
public void setup(Context context) throws IOException,InterruptedException {
mos = new MultipleOutputs(context);
}
public void cleanup(Context context) throws IOException,InterruptedException {
mos.close();
}
然后就可以用mos.write(Key key,Value value,String baseOutputPath)代替context.write(key, value)。
问题描述
在这个例子中,我们将使用Hadoop MultipleOutputs特性将不同的日志分析结果写到不同的输出文件中。
在本例中,我们将为HTTP服务器日志项实现一个Hadoop Writable数据类型。 这里我们假定一个日志项由五部分组成:request host、timestamp、request URL、response size和HTTP状态码。如下所示:
192.168.0.2 - - [01/Jul/1995:00:00:01 -0400] "GET /history/apollo/HTTP/1.0" 200 6245
其中:
- 199.72.81.55 客户端用户的ip
- 01/Jul/1995:00:00:01 -0400 访问的时间
- GET HTTP方法,GET或POST
- /history/apollo/ 客户请求的URL
- 200 响应码 404
- 6245 响应内容的大小
一、创建Java Maven项目
Maven依赖:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>HadoopDemo</groupId>
<artifactId>com.xueai8</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<!--hadoop依赖-->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>3.3.1</version>
</dependency>
<!--hdfs文件系统依赖-->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>3.3.1</version>
</dependency>
<!--MapReduce相关的依赖-->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>3.3.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>3.3.1</version>
</dependency>
<!--junit依赖-->
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<!--编译器插件用于编译拓扑-->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<!--指定maven编译的jdk版本和字符集,如果不指定,maven3默认用jdk 1.5 maven2默认用jdk1.3-->
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.8</source> <!-- 源代码使用的JDK版本 -->
<target>1.8</target> <!-- 需要生成的目标class文件的编译版本 -->
<encoding>UTF-8</encoding><!-- 字符集编码 -->
</configuration>
</plugin>
</plugins>
</build>
</project>
LogWritable.java:
自定义 value 数据类型,需要实现 Writable 接口。
package com.xueai8.multioutput;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
/**
*
* 自定义 value 数据类型,需要实现 Writable 接口
*/
public class LogWritable implements Writable {
private Text userIP; // 客户端的IP地址
private Text timestamp; // 客户访问时间
private Text url; // 客户访问的url
private IntWritable status; // 状态码
private IntWritable responseSize; // 服务端响应数据的大小
public LogWritable() {
this.userIP = new Text();
this.timestamp = new Text();
this.url = new Text();
this.status = new IntWritable();
this.responseSize = new IntWritable();
}
public void set(String userIP, String timestamp, String url, int status, int responseSize) {
this.userIP.set(userIP);
this.timestamp.set(timestamp);
this.url.set(url);
this.status.set(status);
this.responseSize.set(responseSize);
}
public Text getUserIP() {
return userIP;
}
public void setUserIP(Text userIP) {
this.userIP = userIP;
}
public Text getTimestamp() {
return timestamp;
}
public void setTimestamp(Text timestamp) {
this.timestamp = timestamp;
}
public Text getUrl() {
return url;
}
public void setUrl(Text url) {
this.url = url;
}
public IntWritable getStatus() {
return status;
}
public void setStatus(IntWritable status) {
this.status = status;
}
public IntWritable getResponseSize() {
return responseSize;
}
public void setResponseSize(IntWritable responseSize) {
this.responseSize = responseSize;
}
// 序列化方法
@Override
public void write(DataOutput out) throws IOException {
userIP.write(out);
timestamp.write(out);
url.write(out);
status.write(out);
responseSize.write(out);
}
// 反序列化方法
@Override
public void readFields(DataInput in) throws IOException {
userIP.readFields(in);
timestamp.readFields(in);
url.readFields(in);
status.readFields(in);
responseSize.readFields(in);
}
}
LogMapper.java:
Mapper类。
package com.xueai8.multioutput;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
/**
*
// 199.72.81.55 - - [01/Jul/1995:00:00:01 -0400] "GET /history/apollo/ HTTP/1.0" 200 6245
// "^(\\S+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(.+?)\" (\\d{3}) (\\d+)"
// group(1) - ip
// group(4) - timestamp
// group(6) - status
// group(7) - responseSize
*/
public class LogMapper extends Mapper<LongWritable, Text, Text, LogWritable>{
private final Text outKey = new Text();
private final LogWritable outValue = new LogWritable(); // 自定义Writable类型
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
// 提取相应字段的正则表达式
String regexp = "^(\\S+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(.+?)\" (\\d{3}) (\\d+)";
Pattern pattern = Pattern.compile(regexp);
Matcher matcher = pattern.matcher(value.toString());
if(!matcher.matches()) {
System.out.println("不是一个有效的日志记录");
return;
}
// 提取相应的字段
String ip = matcher.group(1);
String timestamp = matcher.group(4);
String url = matcher.group(5);
int status = Integer.parseInt(matcher.group(6));
int responseSize = Integer.parseInt(matcher.group(7));
// LogWritable为 value
outValue.set(ip, timestamp, url, status, responseSize);
outKey.set(ip); // ip 为key
context.write(outKey, outValue); // 写出
}
}
LogMultiOutputReducer.java:
Reducer类。计算每个IP的下载量,以及每个IP的访问时间。
package com.xueai8.multioutput;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import java.io.IOException;
/**
*
* 计算每个IP的下载量,以及每个IP的访问时间。
*/
public class LogMultiOutputReducer extends Reducer<Text, LogWritable, Text, IntWritable> {
private final IntWritable outValue = new IntWritable(0);
private MultipleOutputs<Text, IntWritable> mos;
@Override
protected void setup(Context context) throws IOException, InterruptedException {
mos = new MultipleOutputs<>(context);
}
@Override
public void reduce(Text key, Iterable<LogWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (LogWritable val : values) {
sum += val.getResponseSize().get(); // HTTP响应数据大小
// 写出。参数分别为:输出命名,key,value
mos.write("timestamps", key, val.getTimestamp());
}
outValue.set(sum);
mos.write("responsesizes", key, outValue);
}
@Override
public void cleanup(Context context) throws IOException,InterruptedException {
mos.close(); // 在这里要关闭MultipleOutputs
}
}
LogMultiOutputDriver.java:
驱动程序类。注意这里我们使用了ToolRunner接口。
package com.xueai8.multioutput;
import com.xueai8.custominput.LogFileInputFormat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
*
* 指定多个命名输出
*/
public class LogMultiOutputDriver extends Configured implements Tool {
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new LogMultiOutputDriver(), args);
System.exit(res);
}
@Override
public int run(String[] args) throws Exception {
if (args.length < 2) {
System.err.println("语法: <input_path> <output_path>");
System.exit(-1);
}
// 提取执行参数中的输入路径和输出路径
String[] otherArgs = new GenericOptionsParser(getConf(),args).getRemainingArgs();
Path input=new Path(otherArgs[0]);
Path output=new Path(otherArgs[1]);
Job job = Job.getInstance(getConf(), "log-analysis");
job.setJarByClass(LogMultiOutputDriver.class);
// set mapper
job.setMapperClass(LogMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LogWritable.class);
// set reducer
job.setReducerClass(LogMultiOutputReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// job.setInputFormatClass(LogFileInputFormat.class);
FileInputFormat.setInputPaths(job, input);
FileOutputFormat.setOutputPath(job, output);
// 为job配置命名输出
MultipleOutputs.addNamedOutput(job, "responsesizes", TextOutputFormat.class, Text.class, IntWritable.class);
MultipleOutputs.addNamedOutput(job, "timestamps", TextOutputFormat.class, Text.class, Text.class);
boolean success = job.waitForCompletion(true);
return (success ? 0 : 1);
}
}
二、配置log4j
在src/main/resources目录下新增log4j的配置文件log4j.properties,内容如下:
log4j.rootLogger = info,stdout
### 输出信息到控制抬 ###
log4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target = System.out
log4j.appender.stdout.layout = org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern = [%-5p] %d{yyyy-MM-dd HH:mm:ss,SSS} method:%l%n%m%n
三、项目打包
打开IDEA下方的终端窗口terminal,执行"mvn clean package"打包命令,如下图所示:
如果一切正常,会提示打jar包成功。如下图所示:
这时查看项目结构,会看到多了一个target目录,打好的jar包就位于此目录下。如下图所示:
四、项目部署
请按以下步骤执行。
1、启动HDFS集群和YARN集群。在Linux终端窗口中,执行如下的脚本:
$ start-dfs.sh $ start-yarn.sh
查看进程是否启动,集群运行是否正常。在Linux终端窗口中,执行如下的命令:
$ jps
这时应该能看到有如下5个进程正在运行,说明集群运行正常:
5542 NodeManager
5191 SecondaryNameNode
4857 NameNode
5418 ResourceManager
4975 DataNode
2、将日志文件log_sample.txt上传到HDFS的/data/mr/目录下。
$ hdfs dfs -mkdir -p /data/mr $ hdfs dfs -put log_sample.txt /data/mr/ $ hdfs dfs -ls /data/mr/
4、提交作业到Hadoop集群上运行。(如果jar包在Windows下,请先拷贝到Linux中。)
在终端窗口中,执行如下的作业提交命令:
$ hadoop jar HadoopDemo-1.0-SNAPSHOT.jar com.xueai8.multioutput.LogMultiOutputDriver /data/mr /data/mr-output
5、查看输出结果。
查看输出目录,可以看到每个命名输出写到一个单独的文件夹中了。如下图所示: