MapReduce基础案例06-计算平均成绩
在本教程中,我们将通过编写MapReduce来统计各科目的平均成绩。
我们需要用到三个成绩数据文件。
Math内容为:语文成绩 china.txt。内容如下:
zhangsan 78 lisi 89 wangwu 96 zhaoliu 67
英语成绩 english.txt。内容如下:
zhangsan 80 lisi 82 wangwu 84 zhaoliu 86
数学成绩 math.txt。内容如下:
zhangsan 88 lisi 99 wangwu 66 zhaoliu 77
一、创建Java Maven项目
Maven依赖:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>HadoopDemo</groupId>
<artifactId>com.xueai8</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<!--hadoop依赖-->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>3.3.1</version>
</dependency>
<!--hdfs文件系统依赖-->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>3.3.1</version>
</dependency>
<!--MapReduce相关的依赖-->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>3.3.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>3.3.1</version>
</dependency>
<!--junit依赖-->
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<!--编译器插件用于编译拓扑-->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<!--指定maven编译的jdk版本和字符集,如果不指定,maven3默认用jdk 1.5 maven2默认用jdk1.3-->
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.8</source> <!-- 源代码使用的JDK版本 -->
<target>1.8</target> <!-- 需要生成的目标class文件的编译版本 -->
<encoding>UTF-8</encoding><!-- 字符集编码 -->
</configuration>
</plugin>
</plugins>
</build>
</project>
AvgMapper.java:
package com.xueai8.avg;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class AvgMapper extends Mapper<LongWritable, Text, Text, FloatWritable> {
// 定义可重用的key和value对象
private final static Text course = new Text();
private final static FloatWritable score = new FloatWritable(0);
@Override
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
// 从hadoop Text类型转换为 java String类型
String line = value.toString();
// 对读取的每一行文本进行分词
StringTokenizer tokenizerLine = new StringTokenizer(line);
String strName = tokenizerLine.nextToken(); // 科目
String strScore = tokenizerLine.nextToken(); // 成绩
course.set(strName);
score.set(Float.parseFloat(strScore));
context.write(course, score);
}
}
AvgReducer.java
package com.xueai8.avg;
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class AvgReducer extends Reducer<Text, FloatWritable, Text, FloatWritable> {
// 定义可重用的key和value对象
private final static Text course = new Text();
private final static FloatWritable avgScore = new FloatWritable(0);
@Override
public void reduce(Text key, Iterable<FloatWritable> values, Context context)
throws IOException, InterruptedException {
float sum = 0; // 记录某一科目总成绩
float count = 0; // 记录某一科目学生总数
for (FloatWritable value : values) {
sum += value.get(); // 累加总成绩
count++; // 统计成绩数量
}
float average = sum / count; // 计算平均成绩
course.set(key);
// avgScore.set(average);
avgScore.set(Math.round(average*100)/100.00f); // 保留小数点后两位
context.write(course, avgScore);// 写出
}
}
AvgDriver.java:
package com.xueai8.avg;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class AvgDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("用法: AvgDriver <in> <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, "Score Average");
job.setJarByClass(AvgDriver.class);
// 设置Mapper
job.setMapperClass(AvgMapper.class);
// Combiner
job.setCombinerClass(AvgReducer.class);
// Reducer
job.setReducerClass(AvgReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FloatWritable.class);
// 输入输出格式类
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
// 输入输出路径
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
// 提交作业
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
二、配置log4j
在src/main/resources目录下新增log4j的配置文件log4j.properties,内容如下:
log4j.rootLogger = info,stdout
### 输出信息到控制抬 ###
log4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target = System.out
log4j.appender.stdout.layout = org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern = [%-5p] %d{yyyy-MM-dd HH:mm:ss,SSS} method:%l%n%m%n
三、项目打包
打开IDEA下方的终端窗口terminal,执行"mvn clean package"打包命令,如下图所示:
如果一切正常,会提示打jar包成功。如下图所示:
这时查看项目结构,会看到多了一个target目录,打好的jar包就位于此目录下。如下图所示:
四、项目部署
请按以下步骤执行。
1、启动HDFS集群和YARN集群。在Linux终端窗口中,执行如下的脚本:
$ start-dfs.sh
$ start-yarn.sh
查看进程是否启动,集群运行是否正常。在Linux终端窗口中,执行如下的命令:
$ jps
这时应该能看到有如下5个进程正在运行,说明集群运行正常:
5542 NodeManager
5191 SecondaryNameNode
4857 NameNode
5418 ResourceManager
4975 DataNode
2、将数据文件sample.txt上传到HDFS的/data/mr/目录下。
$ hdfs dfs -mkdir -p /data/mr $ hdfs dfs -put china.txt /data/mr/ $ hdfs dfs -put english.txt /data/mr/ $ hdfs dfs -put math.txt /data/mr/ $ hdfs dfs -ls /data/mr/
3、提交作业到Hadoop集群上运行。(如果jar包在Windows下,请先拷贝到Linux中。)
在终端窗口中,执行如下的作业提交命令:
$ hadoop jar com.xueai8-1.0-SNAPSHOT.jar com.xueai8.avg.AvgDriver /data/mr /data/mr-output
4、查看输出结果。
在终端窗口中,执行如下的HDFS命令,查看输出结果:
$ hdfs dfs -ls /data/mr-output $ hdfs dfs -cat /data/mr-output/part-r-00000
可以得到类似下面这样的输出结果:
lisi 90.0 wangwu 82.0 zhangsan 82.0 zhaoliu 76.67